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Transverse and longitudinal dynamics of nonlinear intramolecular excitations
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A model of nonlinear intramolecular excitations on a multileg ladder lattice integrable by the inverse
scattering transform is elaborated. The principal question of how to include the interchain linear coupling
between excitations in the inverse scattering scheme is solved, and a detailed outline of the inverse scattering
technique transforming the initially nonlinear problem into a linear one is given. The model permits a number
of physically interesting applications related to striplike and bunchlike biological and condensed matter sys-
tems and in its partially continuous form to arrays of linearly and nonlinearly coupled optical fibers. The
soliton dynamics across and along the chains for the cases of two-leg and three-leg ladder lattices is analyzed.
The effect of an external magnetic field on the transverse dynamics of charged excitations on a three-leg ladder
lattice with triangular cross section is studied and circular traveling as well as standing modes supporting the
oscillating redistribution of soliton density between the chains are described. From the physical point of view
it is reasonable to treat all transverse modes caused by interchain linear couplings as breathing modes, insofar
as they correspond to the intrinsic degrees of freedom of a spatially constricted nonlinear wave packet moving
uniformly as a whole along the chains.

PACS numbgs): 41.20.Jb, 71.3&:i, 11.10.Lm

[. INTRODUCTION otherwise their lattice structure will be thermodynamically
unstabld 20]. Such reasoning has inevitably given rise to the
Since the integrability of a continuous nonlinear Sehro development of discrete nonlinear models in more than one
dinger equation in one spatial dimension was discovgtgéd spatial dimension either to investigate the lattice dynamics of
models of nonlinear Schdinger type have played an excep- macromolecules themselvg®1-23 or to study the propa-
tional role in physical applications for around three decadesgation of nonlinear intramolecular excitations on them
They arise in rather different physical systems where th¢16,17]. Recently, we have published two articlg®4,25
balance between dispersion and nonlinearity produces th#ealing with nonlinear integrable models of intramolecular
fundamental entity known as a soliton. The applications ofexcitations on two-leg and multileg ladder lattices. The
such models stretch from transport phenomena in lowmodel on a two-leg ladder lattid®4] has been described in
dimensional biological[2—4] and condensed matt¢4—7]  detail while for the model on a multileg ladder lattif25]
systems to two-dimensional self-focusiri@,8] and one- only a first rapid sketch has been given. Here we will try to
dimensional self-modulatiof] of light in nonlinear media, fill in this gap by presenting the nonlinear model of intramo-
to say nothing of light pulse propagation in optical fiberslecular excitations on a multileg ladder lattice as broadly as
[9-11] and electric pulse propagation in nonlinear transmisnow possible. Of course, results for the two-leg ladder model
sion lines[12]. The most intriguing ones are the multicom- will always be developed from the multileg ladder model as
ponent nonlinear models supporting nonling@r9,11,13—  the most general one. We also consider our integrable model
15] or linear[16,17] couplings between their components, as a plausible zero approximation at least for such known
thereby prompting rather sophisticated effects of mode-modphysically motivated models as arrays of tunnel-coupled
interactions. However, as a rule only some of them are intenonlinear optical fiber§26—28 or models for the transport
grable, in particular, the well-known two-component Mana-of excitation energy and charge in transversely coupled bio-
kov model [8] admitting equal contributions from cross- logical macromolecule$2—4]. In doing so we recall the
phase and self-phase modulation effects as well as itpowerful experience of other integrable models successfully
discretized multicomponent versions that have recently apapplied as good starting positions in the analytical and nu-
peared in the literaturgl8,19. Though very useful for non- merical treatment of real physical systef29-32. It is
linear optics, models of the Manakov ty}8,18,19 are  worth noticing that apart from the interchain and intrachain
hardly suitable for the needs of biological and condensedinear couplings our model reproduces nonlinear cross-phase
matter systems, inasmuch as they serve as integrable modelsd self-phase modulation effects, too. In this respect we
only for so-called incoherent solitons and do not describe theould regard it as some discrete multicomponent generaliza-
effects of lineartunneling couplings between the excitation tion of its continuous two-component counterpd88—-36.
amplitudes belonging to different chains. Meanwhile, real The paper is organized as follows. In Sec. Il we derive the
macromolecular systems should always be at least quasi-oneenlinear model of intramolecular excitations on a multileg
dimensional(i.e., should consist of several coupled chains ladder lattice with linear and nonlinear interchain couplings
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explicitly taken into account. We obtain the Lax representa-on the 2M-component column vectar(n|z) with the preas-
tion of the model, thereby proving its exact integrability. In signed but appropriately chosen spectral operafotz) and
Sec. Il we develop the basic principles of the inverse scatthe evolution operatoA(n|z) unknown a priori. Here 7
tering transform as related to the model of interest and introstands for the dimensionless time. The spectral paraméter
duce the so-called modified transition matrix, playing a fun-assumed to be time independent as usual, while the explicit
damental role in the integration of multicomponent nonlinearindication on the time dependences of other quantities will
models with linear interchain couplings. In Sec. IV we derivetypically be omitted for the sake of brevity. According to the
Marchenko-type equations and in Sec. V we outline the gengeneral rulgd40] the spectra(1) and evolution(2) problems
eral scheme of their solution and present explicitly the rewill be compatible, provided the so-called cross-
duced soliton solution of the model. In Sec. VI we discussdifferentiation condition
the possible physical applications of the model and give a
detailed analysis of soliton solutions as related to spatially
constricted intramolecular excitations on two-leg and three-
leg ladder lattices. Moreover, we describe the effects of a
longitudinal magnetic field on the transverse soliton dynamon the vectou(n|z) is imposed. As a result, the restriction
ics of charged excitations on a three-leg ladder lattice with
triangular cross section and point out different types of trans- dL(n|z)/dr=A(n+1|z)L(n|2)—L(n|2)A(n|z)  (4)
verse modes depending on the value of magnetic field.

Finally, in Sec. VIl we summarize our results and discusson the operatoA(n|z) is obtainable. This equation allows us
briefly the relationship of beating, standing, and travelingboth to restore the explicit form of the evolution operator

[du(m|2)/d7]m=pn+1=du(n+1|2)/d7 (3)

circular modes with breathing modes. A(n|z) and to isolate the nonlinear evolution model of inter-
est, provided the sequence of powers in an expansion of
Il. MODEL OF INTEREST AND ITS DERIVATION A(n|z) with respect toz is suitably selected. For our pur-

poses the first nontrivial choice, when the power sequence in
an expansion oA(n|z) follows that ofL?(n|z), turns out to
be rather satisfactory.

Following the terminology of transport phenomena we
define the quantitieg,(n) andr ,(n) to be the amplitudes of
intramolecular excitation of a molecule sited on thén In accordance with our aspirations the most suitable ma-
cha|n.W|th|n thenth unit .ceII. The Ion'glt'ugﬂnal numerical v form of the spectral operatok(n|z) is postulated as
coordinaten runs from minus to plus infinity, whereas the ¢;ows:
transverse oner runs from 1 to the number of chaini.

Furthermore, we consider the intrachain linear couplings be-

tween excitations to be of the nearest neighboring type, zl F(n)E
while the interchain ones are extended within each unit cell. L(n|z)= A 5
As a result the whole structure of tunneling chanribtsnds EG(n) z7I

will form some sophisticated multileg ladder with legs di-

rected along the chains and rungs connecting all moleculedereafter the quantities E, T, and F(n),G(n) stand for
within the same unit cell. Unfortunately, as usually happensM X M submatrices defined by the expressions

in other discrete integrable mod¢1s8,19,31, we are not in

a position to follow literally all of the nonlinear features of I=[1.5]1=[6.,] ©6)
real physical systems, but the main part of them will be ap apd:

reproduced rather accurately. In any case the difference be-

tween the real and modeled nonlinearities can be reasonably E=[E,zl=[1], (7)
taken into account even in describing the strongly localized

stateg29,30,38.

In order to derive the nonlinear model of intramolecular T=[tal, ®)
excitations on a multileg ladder lattice integrable by inverse
scattering transform, we start with the standard Lax approach E(M=[F (m1=lig (. .1/ VM 9
[39] and introduce two auxiliary linear problems, (M=[F ap(M]=Li0a(N) Supl/ VM, ©
u(n+1/2)=L(n[2)u(n|2). n G(N)=[Gp(M)]=[i 8up oMM, (10
Then, the above mentioned guiding scheme allow us on the
du(n|z)/dr=A(n|z)u(n|z2), (2)  one hand to fix the form of the evolution operator explicitly,

iz2l —iF(N)EEG(n—1)+iT  izF(n)E—iz F(n—1)E

izEG(n—1)—iz 'EG(n) —iz 2l +iEG(n)F(n—1)E/’ (1)

A(n|z)=
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and on the other hand to obtain the exactly integrable mode?rovided the matriXt,s] is Hermitian,t} ;=tg,, this last

of some intramolecular nonlinear excitations on a multilegmodel (14) and (15) gains a direct physical implication, in-

(M-leg) ladder lattice,

M
iqa(n)+g1 taplp(M)+[Au(n+1)+q,(n—1)]

M
X 1+ﬁ§=:l qg(n)rg(n)

M
=B§1 [0a(N—1)qs(N) — . (N)gg(n—1)]r z(n),

(12
M
—if{,[(n)ﬂLﬁZl ra(Mtga+[ra(n+1)+r,(n—1)]

M
X 1+;321 rg(n)gg(n)

M
=B§1 [Fo(N+1)F (M) =T o(N)r 5(n+1)]q4(N),

(13

asmuch as then its amplitudes can be linked by one of the
reductionsr ,(n)=q%(n) or r,(n)=-q%(n). Indeed, as
long as the initia[Egs. (12) and (13)] and simplified[Egs.

(14) and (15)] models conserve the quantity

0

Eln

m=—o

M
1+B§1 q(m)r 5(m)

we can introduce the corrected amplitudes

M

*In 1+;a§=:1 qg(n)rg(n)

|

’

|

Qa(n):qa(n) M
B§=:1 ag(n)rg(n)
(16)

M

*In 1+BZl gg(n)rg(n)

Ra(n)=r4(n)

M , (17)
le qg(n)rg(n)

where the overdot stands for the derivative with respect téevealing atr ,(n)==gqz(n) all the necessary features of

the dimensionless time. As we have already pointed out,
the longitudinal numerical coordinateruns from minus to
plus infinity, while the transverse one runs from 1 to the
number of chainglegs, M. This statement will always be
applied whenever the quantitigs and « are mentioned.
From Eqs(12) and(13) it is readily seen that the parameters

t,z are responsible for the interchain linear coupling, while

the constants of the intrachain linear coupling are normalize
to unity. The coupling parametets; are supposed to be
arbitrary and even time dependent for the time being.

By the way, when starting with the expressiois and
(12) for L(n|z) andA(n|z) as known we can treat the matrix
equation(4) as the Lax or zero-curvature representation o
our model(12) and (13). The existence of such a represen-

tation is actually a basic condition sufficient to handle the

exact integrability of the model under investigation.

A comprehensive analysis carried out by inverse scatter-

ing transform shows that one-soliton amplitudes cancel th
right-hand terms in Eqg12) and (13) identically, and con-
vert the initial multileg mode(12) and(13) into the simpler
one,

M
1AM+ 2, tapp() +[Qa(N+ 1)+ qo(n=1)]

M ):0’

—ir () + 2 1a(Mtgat[ra(n+1)+r,(n—1)]
A=1

J-o.

M

X 1+521 qg(n)rg(n)

14

M

X 1+BZ1 rs(n)ag(n)

(19

probability amplitudes. Of course, both models can easily be
reformulated in terms of,(n) andR,(n).

lIl. INVERSE SCATTERING SCHEME: SOME BASIC
DEFINITIONS AND USEFUL PREPARATORY RESULTS

Although we already know that the multicomponent
(Snodel (12) and (13) is exactly integrable, nevertheless the
general method of its integration requires a number of essen-
tial modifications as compared with purely one-chain models
[37,40,4] or multichain models without interchain linear
coupling[18,19. Thus, we should include the effects of in-

fterchain linear coupling in the inverse scattering scheme it-

self, which will be shown to be a rather nontrivial move.
Fortunately, experience acquired by integrating the nonlinear
model on a two-leg ladder lattid@4] will allow us to over-
come the difficulties.

In what follows we restrict ourselves to the case of poten-
fials q.(n) andr ,(n) rapidly decreasing at infinitjn| — o

and define the leff¢;(n|z)} and right{¢;(n|z)} Jost bases
(j=1,2,...,2M) as the vector sets satisfying the auxiliary
spectral problem(1) and (5) and fixed by the asymptotic
conditions

2M

> 6jkz”> as n——oo,
=M+1

(18

M
‘Pij(n|z)~5ij(k21 5jk2n+k

2M

> &z "| as n—+tox,
M1

(19

M
‘/’ij(n|z)~5ij(kzl 5jk2n+k

Hereg;; (n]2) and;; (n|2) are theith components of vectors
¢j(n|z) and ¢;(n|z), respectively. Then, the transition ma
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{a(n[2)2", ... gu(n|2)Z ",
em+1(n|2)2", ... eom(n|2)2") (27)

trix [a;(2)] gives the transformation from one basis to the
other,

2M

¢k(n|z)=j21 #(nlz)ay()  (k=12,...,2M). are analytic outside|¢/>1) and inside |z|<1) the unit
(20) circle, respectively, provided the potentigjg(n) andr ,(n)
decrease sufficiently rapidly &s|—c«. These properties en-

Conversely, supposing that the Jost bases are known, thgle us to seek the vectors of the right Jost basis in the form

relation

2M
kW{(l— i) Yi(n|2) + Sii(n|2)}
-1
aj(2)= A (21
kW{‘//k(n|Z)}
-1

for the matrix elements,;;(z) can easily be obtained. Here

W2M v (n|z)} stands for the Wronskian of anyM2 solu-

tionsvy(n|z),v,(n|z), ... Vou(n|z) of the spectral problem

(1),(5) and it is defined by the identity

2M
kW {vi(n|z)}=defvi(n|2)] (22
-1

with v;(n|z) denoting theith component of the vector

vi(n|2).

© M 2M
lﬂj(n|z):2 Kj(n|l) > Sz + > sz,
=n k=1 K=M+1

j=123... M. (29)

After substitution into the spectral equatiéh) with L(n|z)
given by Eq.(5) the expansion$28) yield the relationships
between the amplitudeg,(n) andr,(n) and the compo-
nentsKj; (n|m) of column vectorK ;(n|m) as follows:

F(N)E=—K(n[n+1)[K(n|n)] %, (29)
EG(n)=—K(n|n+1)[K(n[n)]~%. (30)

Here K (n|m), R(n|m) andR(n|m), +Kf(n|m) are the di-

Taking the Wronskian from both parts of the transformingagonal and off-diagonaM x M submatrices of the 12

equationg20) we come to the normalizing condition

2M

W {¢(n|2)}
k=1

defajj(2)]=5———
W {#(n[2)}
k=1

]

- 11

m=—o

M
1+B§1 qﬁ<m>r5<m>), (29

where in the last step the following relations have been usec{

M

1+B§1 q3<m>r,;(m>), (24)

oM n-1
Wiadniz)= 11

o0

2M
W {snlz)}= 11

M -1
1+ 2, q,;(m)rB(m)) , (295

based upon the combination of the spectral prob{&n(5)
and the asymptotic condition(48),(19).
Finally, it can be shown that two sets of vectors

n

{¢l(n|z)z_nv s l‘pM(n|Z)Z_ ’
Yn+1(n|2)Z", ... Pu(n]2)2"} (26)

and

X 2M matrix [K;;(n|m)], respectively, or more precisely

K(n|m) K(n|m)
[Kij(nfm)]={ o : (31
K(n|m) K(n|m)

For the sake of brevity, we will adopt a similar blocklike
representation for any MX2M matrix whenever it is
needed.

To integrate the nonlinear model2) and(13) we should
obtain a set of equations for the column vectérgn|m)
equations of Marchenko typet2]) and then try to solve
hem with respect to some particular matrix elements
Kij(n|m) involved in the relationg29) and (30). At this
point, in contrast to the one-chain modg$s,40,41 and the
multichain models without interchain linear coupling
[18,19, where the inverse scattering scheme is based on the
analytical properties of Jost vectors side by side with the
analytical properties of diagonal submatrices of the transition
matrix, we inevitably arrive at a substantially more general
way of reasoning. Indeed, although in the case of the multi-
chain model(12) and (13) the analytical properties of the
Jost vectors are still detectable, the analytical properties of
the transition coefficienta;(z) cannot be revealed priori
and, furthermore, are proven to be quite unnecessary. In-
stead, the entire logic of the problem leads us to the modified
transition matrix| «;(z)] given by the combinations

aik(Z) = 5jk detg(Z)

(at j=1,2,... M; k=12,... M), (32
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M
ajk(z)zz,1 a;(z)d[ deta (2)]/day(2)

(at j=M+1M+2,...,2M; k=12,... M), (33

2M
a(2)= 2 aj(z)ddeta(z)]/da(2)
i=M+1
(at j=1,2,...M; k=M+1M+2, ..., 2M), (34
C!jk(Z):ﬁjkdetg(Z)
(at j=M+1M+2,....2M; k=M+1M+2,...,2M).
(35)

HereE(z) andg(z) are the diagondil X M submatrices of
the 2M X 2M matrix [a;;(2) ].

In what follows only the analytical properties of the diag-
onal elementsy,,(z) of the modified transition matrix are
required. Fortunately, they are precisely those elements ad-

mitting a thorough treatment. Thus, the expressions

2M 2Mm
{E 6Jk<ok<n|z)+ 2 5,k¢k<n|z>]

a11(2)— .
W{'/’k(n|2)}
k=1
(36)
oM (M 2M
W[E S(nlz)+ > 5jk¢k(n|z>]
k=11=1 j=M+1
amam(2) = 2M )

W {¢(n|z2)}
k=1
(37

taken atn— o show thata4(z) and a,py2m(2) are analytic
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These equations have been derived based on the standard
observation that at every=1,2,...,2M the combination
¢j(n|z)—A(n|z)qaj(n|z) satisfies the spectral problem
(1),(5) and, consequently, it is presentable by some linear
superposition of the left Jost vectors.

IV. MARCHENKO EQUATIONS

To proceed further with the fundamental aspects of the
inverse scattering scheme it is helpful to rearrange the inter-
basis link(20) into the form

2M

sk(n|z)akk(z)=j2l H(n2)ay(2), k=12,...

M 1

(39
with the scattering vector§,(n|z) introduced in the follow-
ing way:

M M
&(nlz)akku)zgl soi(nIZ)j; Sydl deta (2)]/ da(2)

2M 2M
+ 2 ez X
i=M+1 j=M+1

x o[ deta (2)]/day(2). (40)

An appropriate analysis of scattering vect8gén|z), similar
to that described by Toda1], yields the limiting formulas

2M
z 8 lim Sk(n|z)z‘”vL E i lim S(n|z)2"=Jy,
‘Zl—»OC ‘Zl—»O
k=1,2,...,M, (41)
and

lim aj(z2)=6y, j,k=12,... M, (42)

|z]—e0
im ay(2)=6y, k=M+1M+2,...,2M, (43

|| —0

outside (z|>1) and inside |z|<1) the unit circle, respec- relevant for future contour integration and reconstruction of

tively.

diagonal matrix elements,,(z), respectively. Herd, is the

We complete this section by presenting the evolutioncolumn vector with théth component equal t6;, .

equations for the elements of the modified transition matrix,

M
djk(z) 2 Oprjl| (z+z7 2 a’jk(z)"'izltjiaik(z))
j'=1 -

2M
>< 2 Se—i 2 8]
=M+1 j'"=M+1

M M
X\ (z+z~ )a'Jk(Z +2 aJI(Z |k) 2_: Ok’

(i=12,....M; k=123...,2M). (38

Assumingay(z) at|z|=1 to be nonzero, we operate on
the rearranged interbasis relati(@®) with

1
N m—1 - om—1
o %akk(z) 2 oz + 2 6,kz
(44)
to find the set of equations
o 2M
Kk(n|m)+|:2n 121 K;(n|DF (1 +m) =3 8nm
(m=n, k=1,2,...,M) (45)
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of Marchenko typd42]. Here the matrix elements;(n) of © ® 2M M
the kernel operator are given by the expressions Ki(nlm)—zn pzn j:%H g’l K;(n|DF (14 p)Fyi(p+m)
N M
1 ap(2) X @ji(Zrk)
Fik(n)=5— dzzn 14> z =Ji0hm— 2 JFki(n+m)
Jk( ) 2 i -1 akk(z) Zl rk aﬁk(zrk) i“nm kzl k kl(
at j=M+1M+2,....M; k=12,... M, (46 (m=n: i=M+1M+2, ... 2\W). (50
Nip
Fi(n)= i a2 _ " a1 @ik(Znd To adapt these equations for the needs of multisolitonic so-
' 2 Jiz=1 a(z) =1 A Zek) lutions we must equalize the scattering data of the continu-

ous spectruma;y(z)/ ay(z) to zero, either on and inside
(]z|=<1) or on and outside|¢|=1) the unit circle, depend-
ing on what combinations of indices|j€M+1M
+2,...,2M; k=1,2,...M) or (j=12,...M; k=M
Fik(n)=0 otherwise, (48 +1M+2,...,2M) are choselithe so-called unreflectional
casg. Then, on the one hand, the matrix elements
where z, stands for therth root of the equationw(z)  F;(I+m) of the kernel operator become degenerizee
=0, aylzy) refers to the derivativ@dakk(z)/dz]Fzrk, and  Egs.(46)—(498)] and, on the other, the form of the diagonal
Ny and N, mark the total number of roots of the equations matrix elementsy,(z) can be reconstructed explicitly:
a11(2)=0 and a,syam(2) =0, respectively. Here we would
like to stress that although the equalitid$)—(48) have been

atj=12,...M; k=M+1M+2,....M, (47

found with the understanding of simple roatg, the case of N2 explustips)
multiple roots can evidently be covered by obtaining limiting akk(Z)ZSHl Zexf— vt iqy)”’ k=12,... M,
expressions on the final results. (51)

The dependences of the scattering dajgz)/ ay(z) as
well as aj(z)/ ag(zk) andz, on time determine the dy-

namics of nonlinear intramolecular excitations on a multileg N2 g gy
ladder lattice via solutions of the Marchenko equations. al2)= z Xp(vs—1ds
However, in contrast to the one-chain models and multichain 5517 2—exp(— us—ips)

models without interchain linear couplings, this dynamics

turns out to be more complicated and even in the one-soliton

case it reproduces both the traditional translational motion of k=M+1M+2,... .M. (52
excitation density along the chains as well as its transverse

temporal redistribution between the chains. In terms of thg g e ps and g are real constants, wheregs and v, are

scattering data, the effect of transverse redistribution arisegysitive real constants. Except for the restrictions imposed
from linear mixing between the elements of the mod|f|edby the assumed simplicity of rootg,, the constants

scattering matrix caused by the interchain linear couplingbS s, ie, ve are supposed to be arbitrary in all other

tap (@7#p). In principle, we can always obtain the time egpacts. FinallyN represents an arbitrary but fixed positive
dependences of the scattering data explicitly, by previously,ieqer, being the number of solitons in some particular mul-
integrating the evolution equatiort88) for the elements of  isyjiton solution. EvidentyNg,= N, = 2N

. ex n "

the modified scattering matrix at any particular choice o Despite being valid only for the unreflectional case, Egs.

coupling parameterg,s («,=12,... M). (51) and (52) are consistent with the analyticity conditions
[a11(2) is analytical atz|>1 anda,ym(2) is analytical at
V. SOLITON SOLUTIONS |zZ/<1] and the limiting conditionglim,_...a;,(z)=1 and

For practical purposes it is worthwhile to separate theJciir.nJZ\—’OgéMZM(é) :hl]’ as well asc\i/\./i'th the normalizing con-
equations fork;(njm) with j=1,2,... M from those for let]lon r(] ) and the pzrlty ?.On 't'r?nsakk(;.z.)_“k'{z)'
K;(nm) with j=M+1M+2,...,2M and to reshape the 'NoUgh not mentioned eartier, the con itiong( —2)

Marchenko equation&t5) into the form = o (2) can easily be proved, at least for rapidly decreasing
potentialsq,(n) andr ,(n) close to those on the compact

o support. We observe, by the way, that all other nonzero ele-
2 K(nIDE (1 +DVEw (D4 ments of the modified transition matrix happen to be odd
& iDF(+PIFG(P+M) finctions of the spectral parameter;(—z) = — aj(2)

0 3 M
K«nlm)—len pE le )

(j=M+1M+2,...,2M; k=1.2,... M and ]
M =12,...M; K=M+1M+2,...,2M).
=Ji0hm— kz%—%—l JkFii(n+m) Manipulating the Marchenko equatiot¥9) and(50) in a

way standard for integral equations with degenerate kernels
[43] and using all the parity conditions of the modified tran-
(m=n; i=12,... M), (49 sition matrix just mentioned, we find
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N 2M N M
Ki(nlm)= > J_E X3 qm)smz( 5 )E 2, X~ 79:m)Cy gsrr ()b
S 71 N: :
N 2M m N M n m
+> > v n)co§(—) > > eXp(— 75 M) Sy qer (MBS IDE + i Sm— sinz(—>co§ —)
o =1 i=M+1 2 JgZi k=1 2 2
n m M
+cos’-(7)sin2(7) > exp[—ns,r(r1+m)1k21 JbET (m=n; i=M+1IM+2, ..., 2M), (53)
51:1 =

N 2M
mm
n)smz(T) Z_ 2+l exp(— 77s”qm)cs'rs"q(n)bjk

si%(%n) cog mm

N M N 2M
m
2 ,21 sr(n)cosZ(T) 2 P23 exp( 7s7qM) Ssrrs7q (n)b +J Snm—
=11= —
- N 2M
+c0§( )smz( ) > exg—meg(n+m)] X JbEY (m=n; i=12,... M), (54)
2 o1 K=M+1
where the M-component column vector;4(n),Y;4n) with i=M+1M+2,...,2M and X?'(n),Y{'(n) with i
=1,2,... M are determined from the following four sets of linear algebraic equations
N 2M N M
X} - 2 . > X E 2, Carqz(n)Serrsq(M) b D"
s'=11%
. N M
_smz( )exp( Nsg) i~ co§(7) > exp(—ns,rn)ss,,sq(n)kz1 35T
S/:l =
(i=M+1M+2,...,2M), (55
N 2M M
RUEDY 12 v n)E 2, Swqz(N)Carrsq(M)bj b
s'=11%
n N M
=cos’-( 5 )exp( NsqMJ; smz( )E exq—ns,rn)Cs,,sq(n)l(El Jbs!
51:1 =
(i=M+1M+2,...,2M), (56)
and
N M N 2M
Xsr(n 2 E ]S n) 2 K E Cs rs” (n)ss”qsr(n)b
— = SH_l =
mn mn N
=si?| —-|exp = 75n) 3~ co$| | X exp(— 751q)Ssrqer(N) D Jby*
2 2 )42 s k=M-+1
(i=12,... M), (57)
N M N 2M
Yisr(n)_ 2 2 n) 2 K= E Ss rs"q(n) s"qsr(n)b
S/: = S"_l =
2M

N
v ) n N
:coé(T) exp — 7sn)J;— sm2(7> 5’2::1 exp — 775,qn)CS,qsr(n)k;'vl‘,+l Jibs:d
(58)

(i=12,... M),
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respectively. Here we have used the notations
Nsq— %(/-Ls—'— iPs), (59

ﬂsr:%(vs_iqs)v (60)

Csrqsr(N)=Cgrsrgq(N)=2

i 77|

Ss’qs”r(n)ESs”rs’q(n) =2

n
eXF( ﬂsrq + ﬂsrrr)cosz 7

exd — 775’q+ Ngre)N]
sinh( 7 g+ 71t

. (61

~_[mn
EX[I( 773/q+ nsur)Slnz 7

+COSZ( ) exd — (7s qt Nre)N] , 62)
2 sinh( Nsrqt Nsrr)
aj [ exp(7sq)]
b.Sq:ka—le — sq)
K e eg] TS
(j=M+1M+2,....M; i=1.2,... M), (63
ajl exp(— ngr) ]
=2 —————expl 7))
J alik[exq_ Nsr) ] ok
(j=12,...M; k=M+1M+2,...,21). (64)

The formulas(53)—(58) supplemented by the relatiorg9)
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Let us clarify the meaning of the integration parameters.
The coordinatex turns to be the mean longitudinal coordi-
nate of the soliton distribution taken at the initial moment
7=0 due merely to the fact that the identity

NQ,(N)R,(N)

=X+ —7sinhu sinp (68)

I
I

Ms ‘I‘MS

_Qa(MRy(N)

is fulfiled when calculated on the one-soliton amplitudes.
Further, the quantity 2(sintasinp)/u gives the soliton lon-
gitudinal velocity while the quantity I/ determines the typi-
cal longitudinal size of the soliton distribution. The left-hand
side of identity(69) itself is evidently nothing but the defi-
nition of the longitudinal coordinate of the soliton distribu-
tion taken at an arbitrary moment Finally, the amplitudes
b,(7) («=1,2,...M) describe the temporal transverse re-
distribution of soliton density. Indeed, the fraction of the
one-soliton density located on theth chain in accordance
with Egs.(65),(66) and(16),(17) is found to be

ba(7)b5 (7) b, ()b (7)

M
2, bs(0(0

Qa(NR,(N)
M

B; Qa(MRg(N) B; ba(T)bj(7)

(69

and(30) betweerK;;(n|m) andq,(n),r,(n) are sufficientto  where the last step has been reached with the evolution equa-
unravel the problem of any multisoliton solution of our non- tions (67) and the Hermiticity of the interchain coupling ma-
linear model(12) and(13). For example, the amplitudes of a trix [t,z] combined. We will demonstrate the actual tempo-
one-soliton solution restricted by the physically reasonableal interchain redistribution of excitations for particular cases
conditionst g, =17, andr ,(n)=q}(n) (the reduced ampli- admitting physical applications.

tudes are

a.(Nn) VI. BEATING AND CIRCULAR TRANSVERSE MODES

Being rather general, the mod@l2) and (13) permits a
number of physically interesting ramifications obtainable by
merely imposing appropriate restrictions on the coupling
constantd,, ;. Thus, we are able to model the nonlinear ex-
citations on a multileg ladder lattice unrolled into a two-

b, (7)sinhu exdipn+ 2i7coshu cosp]

- ,
\/ E bB(r)bg(r)cosr[,u(n—x)—erinh,u sinp]
B=1

(65  dimensional strip or combined into a three-dimensional
bunch of tightly bound chains. Moreover, in the latter case
ro(N=qg%(n), a=12,...M. (66) we are in a position to apply an external magnetic field par-

allel to the ladder legs in a way similar to that described by
Here u, p, X, andb,(7) are the constant real and time de- Feynman, Leighton, and Sang#4].
pendent complex integration parameters, respectively, deter- We proceed by puttingl =2 andt,z=(1— J,p)t with t
mined through the scattering data of the auxiliary spectraé real constant and obtain from E§$2) and(13) a model of
problem by some one-to-one relations. In particular, thenonlinear intramolecular excitations on a two-leg ladder lat-
quantitiesb ,(7) should satisfy the following set of ordinary tice closely related to that of the double helix DNA macro-
differential equations: molecule. Then solving Eq67) we obtain

M
. ) 2
ba(T)ZIBZl taﬁbB(T) a=12,... M. (67) ba(T):%BZ:l [eiI7+(_l)a*ﬁefitr]bﬁ(o), a=1,2,

Being one-soliton amplitudes, Eq5) and (66) are appli- (70
cable to each of the mode(42), (13) and (14), (15) on an

equal basis. and consequently
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ba(’i’)bz(T) 1 (-1)° +%ex[[2itTCOE(¢/3+27T/3)]
2 =573 [cos 2p cog2t7) 5
> bg(7)bj(7) x> bﬁ(o)e—Zﬂri(a—B)/B,
B=1 B=1

+5sin( 8, — 8,)sin 2¢ sin(2t7)],

a=1,2,3. (73
a=1,2, (71)

where the parametrizationb,(0)=exp{d;)cose, b,(0)  In general, the corresponding expression for the fraction of
=exp(d,)sin¢ has been adopted. From H@J) it is evident  one-soliton density located on thgh chain[Eq. (69)] looks

that there is an interchain beating mode redistributing theather cumbersome. So we can restrict ourselves to the case
excitations between the chains. The beating amplitude ishen the whole initial soliton density is concentrated on the
equal to+/cos 2¢+sin(8;,— 8,)sinf 2¢ and it can be regu- third chain,b,(0)= &,:exp(ss). Then Eq.(69) can be writ-

lated from zero to unity by means of the paramet®&rs d,, ten

and ¢ of the initial transverse distribution. Conversely, the

beating frequency/ 7 has a fundamental physical origin and b, (7)b* (1)

it is determined exclusively by the interchain linear coupling Bel7)B(7) | .

constantt, regardless of any particular solution. Moreover, 3 =3+ 800§ 2\/3t7sin(¢/3) ~2mal3]
the effect of interchain beating will be observable only in 2 bB(T)bZ(T)
systems with interchain linear coupling and it is impossible,#~*

in principle, e.g., in those of Manakov typ8,18,19. Thus

we can readily reveal a similar effect in the mod&2) and

+2cog 23t rsin(w/3— ¢/3) — 27 al3]

(13) on a three-leg ladder latticeM=3) unrolled into a +2cog 23t rsin(w/3+ ¢I3) + 27 al3],
two-dimensional strip [t,z=¢ 35,2825+ (1= 8,5~ 941935

— 8,301p)t], even despite the nonzero differencdetween a=1.23. (74)
the energy of intramolecular excitations of the middle and

side chains.

Now let us consider the case whemM=3 and According to this formula, the transverse redistribution of
t,,=texp(—id3)A(a—B+1) +texp(d/3)A(a—B—1). soliton d_ensity is ca}rried out by three circular traveling_
I—TgreA(n) is equal to 1 if the numbey is equal to 0+ 3 waves with frequencies regulated by the external magnetic
+6,... andzero otherwise. Thus ab=0 the model(12), field. In general, all three modes are different and even in-
and (13) describes the chargeless nonlinear intramoleculaf®Mmensurate ones, though at certain particular values of the
excitations(or charged ones but without external magneticagnetic field the effects of two-mode degeneracy or two-
field) on a symmetrically rolled three-leg ladder lattice. ThisM0de degeneracy accompanied by vanishing of the third
model is closely related to the model established for amid-Mede can be observed.

excitations ona-helix protein macromoleculd®—4]. When for eiample, assuming the magnetic flux to e
the quantitye is nonzero it can be identified with the dimen- = =37/2£37k (k=0,1,2...) we seethat the last two
sionless magnetic flux terms in Eq.(74) become equal. As a result the fraction of

one-soliton density located on tleh chain is supported by

e two different traveling waves on some constant background:
¢=5IBIS (72

through the triangular cross section of the symmetrically — b.(7)b%(7) L ‘

rolled three-leg ladder lattice, provided the excitations are & —=§+5c0§ (- 1)*2\3tr—2mal3]

charged. Her& is the area of a triangular element with ver- >, bg(7)bj(7)

tices situated on molecules of the same unit cell. The con- #=1

stant magnetic fiel® is supposed to be directed along the

positive direction of the discrete longitudinal coordinatet

is worth noticing that the magnetic fiel8 changes the

phases of the interchain coupling parametggs, but fortu- a=1,23. (75)

nately in such a way that the nonlinear model of interest does

not lose its integrability. Then solving the evolution equa-

tions (67) gives rise to Here the sign plus<) or minus (=) is chosen depending
on whether the electric chargeis positive @=+|e|) or

+4cog +(—1)/3tr+27al3],

3
1 . negative €= —|e|).
bo(7)=3exf 2it7cog ¢/3)]521 bs(0) In another| |particular case, wheng=+3wk (k
=0,1,2...) one of thefrequencies is softened to zero,
+ 3exf 2itrcog ¢p/3—27/3)] while the other two coincide, giving rise to a standing mode.
3 As a result the expressidii4) for the fraction of one-soliton
% E bﬂ(o)e2wi(a—ﬁ)/3 density is transformed into one standing wave on some con-

p=1 stant background:
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b,(7)b%(7) mod_es redistributing the soli.ton density in the transverse di-

3 ad =1+ 2coq2mald) rection. Moreover, at some fixed va]ues of the_: magnetic fu_ald
S b b* these modes can be transformed into two circular traveling
= p(7)bp(7) modes or even into one standing mode.

In this respect we are inclined to treat each fraction of
+4cog2mal3)cog3tr), a=1,23.  soliton densityQ,(MR,(n)/Z)_,Qs(MRy(n) as possess-
ing several breathing transverse modes caused by the inter-
(76) chain linear coupling, provided the purely mathematical defi-
nition of breatherqd45,46 is applied toQ,(n)R,(n) [or
VIl. CONCLUSION more generally toQ,(n)Rg(m)] instead of toQ,(n) or

R,(n) separately. Indeed, manipulating the “physically

In conclusion, we have developed an exactly imegrabk?neaningless” quantitie®,(n) or R,(n) (in A. S. Davy-
nonlinear model on a multileg ladder lattice closely related todov’s terminology we c;;n wrongI; include .evén purely

a wide range of phy3|call_y important p_heno_mena from NONYranslational soliton modes into the breathing ones. The most
linear transport in low-dimensional biological, polymeric

' direct way to separate spatially constricted translational

and condensed matter systems to electric pulse Propagationy yes from the breathing ones is to trace the dynamics of

in nonlinear transmission lines and light pulse propagation N e total excitation densitzM LQ.(MR,(n) along the
= o o

tunnel- and nonlinearly coupled arrays of optical fibers. In hains, which, for example iCF1 the case of the one-soliton
doing this, we have suggested a systematic analytical apC_olution (65 and (66) related to any multichain integrable

proach suitable for the needs of nonlinear physics in mor . .
than one spatial dimension and have studied the structure 5@odel of our typ(_a(12) and(_13) IS notr_ung but thg fre.e move-
ment of a pulselike traveling wave in the longitudinal direc-

the simplest nonlinear excitations on two- and three-leg ladfion

r lattices. . . . .
der lattices In some problems, and in particular those dealing with

In particular, we have studied the transverse and longitu- i tics. the di tizati ¢ lit d
dinal dynamics of nonlinear excitations on a two-leg ladderON'IN€Ar OPUCS, the discretization of ampll udgg(n) and
(n) with respect ton becomes unnecessary. Then it is

lattice and have shown the existence of a transverse beatir} ble t | the di " i (13
mode periodically redistributing the soliton density between' a_s;ona te ”0 rep zti_ce e discre Ie EEOLH merz]i_r rr]n(fltié (h )

the chains. Depending on the initial conditions, the relativeby ItS partially continuous equivale , which aiso hap-
amplitude of beating can be varied from zero to unity. On th ens to be integrable. Nevertheless, the general features of

other hand, the frequency of beating has a fundamenta“‘e transvgr;e dyngmics of such a partially continuous model
physical origin and it is determined by the value of the in-fShOUId coincide with those of the completel_y dlscre_te one,
terchain coupling constant. inasmuch as the terms responsible for the interchain linear

In the case of charged nonlinear excitations on a bunch(—:oUpllng are the same in both models.
like three-leg ladder lattice we have mapageq to describe ACKNOWLEDGMENTS
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