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Transverse and longitudinal dynamics of nonlinear intramolecular excitations
on multileg ladder lattices

Oleksiy O. Vakhnenko1,2 and Michael J. Velgakis1
1Engineering Science Department, University of Patras, Patras 26110, Greece

2Department of Nonlinear Physics of Condensed Matter, Bogolyubov Institute for Theoretical Physics, Kyı¨v 03143, Ukraine
~Received 1 November 1999!

A model of nonlinear intramolecular excitations on a multileg ladder lattice integrable by the inverse
scattering transform is elaborated. The principal question of how to include the interchain linear coupling
between excitations in the inverse scattering scheme is solved, and a detailed outline of the inverse scattering
technique transforming the initially nonlinear problem into a linear one is given. The model permits a number
of physically interesting applications related to striplike and bunchlike biological and condensed matter sys-
tems and in its partially continuous form to arrays of linearly and nonlinearly coupled optical fibers. The
soliton dynamics across and along the chains for the cases of two-leg and three-leg ladder lattices is analyzed.
The effect of an external magnetic field on the transverse dynamics of charged excitations on a three-leg ladder
lattice with triangular cross section is studied and circular traveling as well as standing modes supporting the
oscillating redistribution of soliton density between the chains are described. From the physical point of view
it is reasonable to treat all transverse modes caused by interchain linear couplings as breathing modes, insofar
as they correspond to the intrinsic degrees of freedom of a spatially constricted nonlinear wave packet moving
uniformly as a whole along the chains.

PACS number~s!: 41.20.Jb, 71.38.1i, 11.10.Lm
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I. INTRODUCTION

Since the integrability of a continuous nonlinear Sch¨-
dinger equation in one spatial dimension was discovered@1#,
models of nonlinear Schro¨dinger type have played an exce
tional role in physical applications for around three decad
They arise in rather different physical systems where
balance between dispersion and nonlinearity produces
fundamental entity known as a soliton. The applications
such models stretch from transport phenomena in lo
dimensional biological@2–4# and condensed matter@4–7#
systems to two-dimensional self-focusing@1,8# and one-
dimensional self-modulation@1# of light in nonlinear media,
to say nothing of light pulse propagation in optical fibe
@9–11# and electric pulse propagation in nonlinear transm
sion lines@12#. The most intriguing ones are the multicom
ponent nonlinear models supporting nonlinear@8,9,11,13–
15# or linear @16,17# couplings between their component
thereby prompting rather sophisticated effects of mode-m
interactions. However, as a rule only some of them are in
grable, in particular, the well-known two-component Man
kov model @8# admitting equal contributions from cross
phase and self-phase modulation effects as well as
discretized multicomponent versions that have recently
peared in the literature@18,19#. Though very useful for non-
linear optics, models of the Manakov type@8,18,19# are
hardly suitable for the needs of biological and conden
matter systems, inasmuch as they serve as integrable m
only for so-called incoherent solitons and do not describe
effects of linear~tunneling! couplings between the excitatio
amplitudes belonging to different chains. Meanwhile, r
macromolecular systems should always be at least quasi-
dimensional~i.e., should consist of several coupled chain!,
PRE 611063-651X/2000/61~6!/7110~11!/$15.00
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otherwise their lattice structure will be thermodynamica
unstable@20#. Such reasoning has inevitably given rise to t
development of discrete nonlinear models in more than
spatial dimension either to investigate the lattice dynamics
macromolecules themselves@21–23# or to study the propa-
gation of nonlinear intramolecular excitations on the
@16,17#. Recently, we have published two articles@24,25#
dealing with nonlinear integrable models of intramolecu
excitations on two-leg and multileg ladder lattices. T
model on a two-leg ladder lattice@24# has been described i
detail while for the model on a multileg ladder lattice@25#
only a first rapid sketch has been given. Here we will try
fill in this gap by presenting the nonlinear model of intram
lecular excitations on a multileg ladder lattice as broadly
now possible. Of course, results for the two-leg ladder mo
will always be developed from the multileg ladder model
the most general one. We also consider our integrable m
as a plausible zero approximation at least for such kno
physically motivated models as arrays of tunnel-coup
nonlinear optical fibers@26–28# or models for the transpor
of excitation energy and charge in transversely coupled b
logical macromolecules@2–4#. In doing so we recall the
powerful experience of other integrable models successf
applied as good starting positions in the analytical and
merical treatment of real physical systems@29–32#. It is
worth noticing that apart from the interchain and intracha
linear couplings our model reproduces nonlinear cross-ph
and self-phase modulation effects, too. In this respect
could regard it as some discrete multicomponent genera
tion of its continuous two-component counterparts@33–36#.

The paper is organized as follows. In Sec. II we derive
nonlinear model of intramolecular excitations on a multil
ladder lattice with linear and nonlinear interchain couplin
7110 ©2000 The American Physical Society
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explicitly taken into account. We obtain the Lax represen
tion of the model, thereby proving its exact integrability.
Sec. III we develop the basic principles of the inverse sc
tering transform as related to the model of interest and in
duce the so-called modified transition matrix, playing a fu
damental role in the integration of multicomponent nonline
models with linear interchain couplings. In Sec. IV we deri
Marchenko-type equations and in Sec. V we outline the g
eral scheme of their solution and present explicitly the
duced soliton solution of the model. In Sec. VI we discu
the possible physical applications of the model and giv
detailed analysis of soliton solutions as related to spati
constricted intramolecular excitations on two-leg and thr
leg ladder lattices. Moreover, we describe the effects o
longitudinal magnetic field on the transverse soliton dyna
ics of charged excitations on a three-leg ladder lattice w
triangular cross section and point out different types of tra
verse modes depending on the value of magnetic field.

Finally, in Sec. VII we summarize our results and discu
briefly the relationship of beating, standing, and travel
circular modes with breathing modes.

II. MODEL OF INTEREST AND ITS DERIVATION

Following the terminology of transport phenomena w
define the quantitiesqa(n) andr a(n) to be the amplitudes o
intramolecular excitation of a molecule sited on theath
chain within thenth unit cell. The longitudinal numerica
coordinaten runs from minus to plus infinity, whereas th
transverse onea runs from 1 to the number of chains,M.
Furthermore, we consider the intrachain linear couplings
tween excitations to be of the nearest neighboring ty
while the interchain ones are extended within each unit c
As a result the whole structure of tunneling channels~bonds!
will form some sophisticated multileg ladder with legs d
rected along the chains and rungs connecting all molec
within the same unit cell. Unfortunately, as usually happe
in other discrete integrable models@18,19,37#, we are not in
a position to follow literally all of the nonlinear features o
real physical systems, but the main part of them will
reproduced rather accurately. In any case the difference
tween the real and modeled nonlinearities can be reason
taken into account even in describing the strongly localiz
states@29,30,38#.

In order to derive the nonlinear model of intramolecu
excitations on a multileg ladder lattice integrable by inve
scattering transform, we start with the standard Lax appro
@39# and introduce two auxiliary linear problems,

u~n11uz!5L~nuz!u~nuz!, ~1!

du~nuz!/dt5A~nuz!u~nuz!, ~2!
-

t-
-
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on the 2M -component column vectoru(nuz) with the preas-
signed but appropriately chosen spectral operatorL(nuz) and
the evolution operatorA(nuz) unknown a priori. Here t
stands for the dimensionless time. The spectral parametez is
assumed to be time independent as usual, while the exp
indication on the time dependences of other quantities
typically be omitted for the sake of brevity. According to th
general rule@40# the spectral~1! and evolution~2! problems
will be compatible, provided the so-called cros
differentiation condition

@du~muz!/dt#m5n115du~n11uz!/dt ~3!

on the vectoru(nuz) is imposed. As a result, the restrictio

dL~nuz!/dt5A~n11uz!L~nuz!2L~nuz!A~nuz! ~4!

on the operatorA(nuz) is obtainable. This equation allows u
both to restore the explicit form of the evolution operat
A(nuz) and to isolate the nonlinear evolution model of inte
est, provided the sequence of powers in an expansion
A(nuz) with respect toz is suitably selected. For our pur
poses the first nontrivial choice, when the power sequenc
an expansion ofA(nuz) follows that ofL2(nuz), turns out to
be rather satisfactory.

In accordance with our aspirations the most suitable m
trix form of the spectral operatorL(nuz) is postulated as
follows:

L~nuz!5S zI F~n!E

EG~n! z21I
D . ~5!

Hereafter the quantitiesI, E, T, and F(n),G(n) stand for
M3M submatrices defined by the expressions

I[@ I ab#5@dab#. ~6!

E[@Eab#5@1#, ~7!

T[@ tab#, ~8!

F~n![@Fab~n!#5@ iqa~n!dab#/AM , ~9!

G~n![@Gab~n!#5@ idabr b~n!#/AM . ~10!

Then, the above mentioned guiding scheme allow us on
one hand to fix the form of the evolution operator explicitl
A~nuz!5S iz2I 2 iF ~n!EEG~n21!1 iT izF~n!E2 iz21F~n21!E

izEG~n21!2 iz21EG~n! 2 iz22I 1 iEG~n!F~n21!E
D , ~11!
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and on the other hand to obtain the exactly integrable mo
of some intramolecular nonlinear excitations on a multi
(M -leg! ladder lattice,

i q̇a~n!1 (
b51

M

tabqb~n!1@qa~n11!1qa~n21!#

3S 11 (
b51

M

qb~n!r b~n!D
5 (

b51

M

@qa~n21!qb~n!2qa~n!qb~n21!#r b~n!,

~12!

2 i ṙ a~n!1 (
b51

M

r b~n!tba1@r a~n11!1r a~n21!#

3S 11 (
b51

M

r b~n!qb~n!D
5 (

b51

M

@r a~n11!r b~n!2r a~n!r b~n11!#qb~n!,

~13!

where the overdot stands for the derivative with respec
the dimensionless timet. As we have already pointed ou
the longitudinal numerical coordinaten runs from minus to
plus infinity, while the transverse onea runs from 1 to the
number of chains~legs!, M. This statement will always be
applied whenever the quantitiesn and a are mentioned.
From Eqs.~12! and~13! it is readily seen that the paramete
tab are responsible for the interchain linear coupling, wh
the constants of the intrachain linear coupling are normali
to unity. The coupling parameterstab are supposed to b
arbitrary and even time dependent for the time being.

By the way, when starting with the expressions~5! and
~11! for L(nuz) andA(nuz) as known we can treat the matr
equation~4! as the Lax or zero-curvature representation
our model~12! and ~13!. The existence of such a represe
tation is actually a basic condition sufficient to handle t
exact integrability of the model under investigation.

A comprehensive analysis carried out by inverse scat
ing transform shows that one-soliton amplitudes cancel
right-hand terms in Eqs.~12! and ~13! identically, and con-
vert the initial multileg model~12! and~13! into the simpler
one,

i q̇a~n!1 (
b51

M

tabqb~n!1@qa~n11!1qa~n21!#

3S 11 (
b51

M

qb~n!r b~n!D 50, ~14!

2 i ṙ a~n!1 (
b51

M

r b~n!tba1@r a~n11!1r a~n21!#

3S 11 (
b51

M

r b~n!qb~n!D 50. ~15!
el

o

d

f
-

r-
e

Provided the matrix@ tab# is Hermitian, tab* 5tba , this last
model ~14! and ~15! gains a direct physical implication, in
asmuch as then its amplitudes can be linked by one of
reductions r a(n)5qa* (n) or r a(n)52qa* (n). Indeed, as
long as the initial@Eqs. ~12! and ~13!# and simplified@Eqs.
~14! and ~15!# models conserve the quantity

(
m52`

`

lnF11 (
b51

M

qb~m!r b~m!G ,

we can introduce the corrected amplitudes

Qa~n!5qa~n!!6 lnF11 (
b51

M

qb~n!r b~n!G
(
b51

M

qb~n!r b~n!

,

~16!

Ra~n!5r a~n!!6 lnF11 (
b51

M

qb~n!r b~n!G
(
b51

M

qb~n!r b~n!

, ~17!

revealing atr a(n)56qa* (n) all the necessary features o
probability amplitudes. Of course, both models can easily
reformulated in terms ofQa(n) andRa(n).

III. INVERSE SCATTERING SCHEME: SOME BASIC
DEFINITIONS AND USEFUL PREPARATORY RESULTS

Although we already know that the multicompone
model ~12! and ~13! is exactly integrable, nevertheless th
general method of its integration requires a number of ess
tial modifications as compared with purely one-chain mod
@37,40,41# or multichain models without interchain linea
coupling @18,19#. Thus, we should include the effects of in
terchain linear coupling in the inverse scattering scheme
self, which will be shown to be a rather nontrivial mov
Fortunately, experience acquired by integrating the nonlin
model on a two-leg ladder lattice@24# will allow us to over-
come the difficulties.

In what follows we restrict ourselves to the case of pote
tials qa(n) and r a(n) rapidly decreasing at infinityunu→`
and define the left$wj (nuz)% and right$cj (nuz)% Jost bases
( j 51,2, . . . ,2M ) as the vector sets satisfying the auxilia
spectral problem~1! and ~5! and fixed by the asymptotic
conditions

w i j ~nuz!;d i j S (
k51

M

d jkzn1 (
k5M11

2M

d jkz2nD as n→2`,

~18!

c i j ~nuz!;d i j S (
k51

M

d jkzn1 (
k5M11

2M

d jkz2nD as n→1`.

~19!

Herew i j (nuz) andc i j (nuz) are thei th components of vectors
wj (nuz) and cj (nuz), respectively. Then, the transition m
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trix @ajk(z)# gives the transformation from one basis to t
other,

wk~nuz!5(
j 51

2M

cj~nuz!ajk~z! ~k51,2, . . . ,2M !.

~20!

Conversely, supposing that the Jost bases are known
relation

ai j ~z!5

W
k51

2M

$~12d ik!ck~nuz!1d ikwj~nuz!%

W
k51

2M

$ck~nuz!%

~21!

for the matrix elementsai j (z) can easily be obtained. Her
Wk51

2M $vk(nuz)% stands for the Wronskian of any 2M solu-
tionsv1(nuz),v2(nuz), . . . ,v2M(nuz) of the spectral problem
~1!,~5! and it is defined by the identity

W
k51

2M

$vk~nuz!%[det@v ik~nuz!# ~22!

with v ik(nuz) denoting the i th component of the vecto
vk(nuz).

Taking the Wronskian from both parts of the transformi
equations~20! we come to the normalizing condition

det@ai j ~z!#5

W
k51

2M

$wk~nuz!%

W
k51

2M

$ck~nuz!%

5 )
m52`

` S 11 (
b51

M

qb~m!r b~m!D , ~23!

where in the last step the following relations have been us

W
k51

2M

$wk~nuz!%5 )
m52`

n21 S 11 (
b51

M

qb~m!r b~m!D , ~24!

W
k51

2M

$ck~nuz!%5 )
m5n

` S 11 (
b51

M

qb~m!r b~m!D 21

, ~25!

based upon the combination of the spectral problem~1!,~5!
and the asymptotic conditions~18!,~19!.

Finally, it can be shown that two sets of vectors

$w1~nuz!z2n, . . . ,wM~nuz!z2n,

cM11~nuz!zn, . . . ,c2M~nuz!zn% ~26!

and
he

d:

$c1~nuz!z2n, . . . ,cM~nuz!z2n,

wM11~nuz!zn, . . . ,w2M~nuz!zn% ~27!

are analytic outside (uzu.1) and inside (uzu,1) the unit
circle, respectively, provided the potentialsqa(n) andr a(n)
decrease sufficiently rapidly asunu→`. These properties en
able us to seek the vectors of the right Jost basis in the f

cj~nuz!5(
l 5n

`

K j~nu l !S (
k51

M

d jkzl1 (
k5M11

2M

d jkz2 l D ,

j 51,2,3, . . . ,M . ~28!

After substitution into the spectral equation~1! with L(nuz)
given by Eq.~5! the expansions~28! yield the relationships
between the amplitudesqa(n) and r a(n) and the compo-
nentsKi j (num) of column vectorK j (num) as follows:

F~n!E52
21

K ~nun11!@
11

K ~nun!#21, ~29!

EG~n!52
12

K ~nun11!@
22

K ~nun!#21. ~30!

Here
22

K (num),
11

K (num) and
21

K (num),
12

K (num) are the di-

agonal and off-diagonalM3M submatrices of the 2M
32M matrix @Ki j (num)#, respectively, or more precisely

@Ki j ~num!#[S 22

K ~num!
21

K ~num!

12

K ~num!
11

K ~num!
D . ~31!

For the sake of brevity, we will adopt a similar blocklik
representation for any 2M32M matrix whenever it is
needed.

To integrate the nonlinear model~12! and~13! we should
obtain a set of equations for the column vectorsK j (num)
~equations of Marchenko type@42#! and then try to solve
them with respect to some particular matrix eleme
Ki j (num) involved in the relations~29! and ~30!. At this
point, in contrast to the one-chain models@37,40,41# and the
multichain models without interchain linear couplin
@18,19#, where the inverse scattering scheme is based on
analytical properties of Jost vectors side by side with
analytical properties of diagonal submatrices of the transit
matrix, we inevitably arrive at a substantially more gene
way of reasoning. Indeed, although in the case of the mu
chain model~12! and ~13! the analytical properties of the
Jost vectors are still detectable, the analytical properties
the transition coefficientsajk(z) cannot be revealeda priori
and, furthermore, are proven to be quite unnecessary.
stead, the entire logic of the problem leads us to the modi
transition matrix@a jk(z)# given by the combinations

a jk~z!5d jk det
22

a ~z!

~at j 51,2, . . . ,M ; k51,2, . . . ,M !, ~32!



g-

a

-

io
rix

dard

ear

the
ter-

of

n

7114 PRE 61OLEKSIY O. VAKHNENKO AND MICHAEL J. VELGAKIS
a jk~z!5(
i 51

M

aji ~z!]@det
22

a ~z!#/]aki~z!

~at j 5M11,M12, . . . ,2M ; k51,2, . . . ,M !, ~33!

a jk~z!5 (
i 5M11

2M

aji ~z!]@det
11

a ~z!#/]aki~z!

~at j 51,2, . . . ,M ; k5M11,M12, . . . ,2M !, ~34!

a jk~z!5d jkdet
11

a ~z!

~at j 5M11,M12, . . . ,2M ; k5M11,M12, . . . ,2M !.
~35!

Here
22

a (z) and
11

a (z) are the diagonalM3M submatrices of
the 2M32M matrix @ai j (z)#.

In what follows only the analytical properties of the dia
onal elementsakk(z) of the modified transition matrix are
required. Fortunately, they are precisely those elements
mitting a thorough treatment. Thus, the expressions

a11~z!5

W
k51

2M H (
j 51

M

d jkwk~nuz!1 (
j 5M11

2M

d jkck~nuz!J
W

k51

2M

$ck~nuz!%

,

~36!

a2M2M~z!5

W
k51

2M H (
j 51

M

d jkck~nuz!1 (
j 5M11

2M

d jkwk~nuz!J
W

k51

2M

$ck~nuz!%

,

~37!

taken atn→` show thata11(z) anda2M2M(z) are analytic
outside (uzu.1) and inside (uzu,1) the unit circle, respec
tively.

We complete this section by presenting the evolut
equations for the elements of the modified transition mat

ȧ jk~z!5 i (
j 851

M

d j 8 j S ~z1z22!a jk~z!1(
i 51

M

t ji a ik~z!D
3 (

k85M11

2M

dkk82 i (
j 85M11

2M

d j 8 j

3S ~z1z22!a jk~z!1(
i 51

M

a j i ~z!t ikD (
k851

M

dkk8

~ j 51,2, . . . ,2M ; k51,2,3, . . . ,2M !. ~38!
d-

n
,

These equations have been derived based on the stan
observation that at everyj 51,2, . . . ,2M the combination
ẇj (nuz)2A(nuz)wj (nuz) satisfies the spectral problem
~1!,~5! and, consequently, it is presentable by some lin
superposition of the left Jost vectors.

IV. MARCHENKO EQUATIONS

To proceed further with the fundamental aspects of
inverse scattering scheme it is helpful to rearrange the in
basis link~20! into the form

Sk~nuz!akk~z!5(
j 51

2M

cj~nuz!a jk~z!, k51,2, . . . ,M ,

~39!

with the scattering vectorsSk(nuz) introduced in the follow-
ing way:

Sk~nuz!akk~z![(
i 51

M

wi~nuz!(
j 51

M

d jk]@det
22

a ~z!#/]aki~z!

1 (
i 5M11

2M

wi~nuz! (
j 5M11

2M

d jk

3]@det
11

a ~z!#/]aki~z!. ~40!

An appropriate analysis of scattering vectorsSk(nuz), similar
to that described by Toda@41#, yields the limiting formulas

(
i 51

M

d ik lim
uzu→`

Sk~nuz!z2n1 (
i 5M11

2M

d ik lim
uzu→0

Sk~nuz!zn5Jk ,

k51,2, . . . ,2M , ~41!

and

lim
uzu→`

ajk~z!5d jk , j ,k51,2, . . . ,M , ~42!

lim
uzu→0

ajk~z!5d jk , j ,k5M11,M12, . . . ,2M , ~43!

relevant for future contour integration and reconstruction
diagonal matrix elementsakk(z), respectively. HereJk is the
column vector with thei th component equal tod ik .

Assumingakk(z) at uzu51 to be nonzero, we operate o
the rearranged interbasis relation~39! with

1

2p i R dz

akk~z! F(i 51

M

d ikz2m211 (
i 5M11

2M

d ikzm21G . . .

~44!

to find the set of equations

K k~num!1(
l 5n

`

(
j 51

2M

K j~nu l !F jk~ l 1m!5Jkdnm

~m>n, k51,2, . . . ,2M ! ~45!
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of Marchenko type@42#. Here the matrix elementsF jk(n) of
the kernel operator are given by the expressions

F jk~n!5
1

2p i Ruzu51
dz z2n21

a jk~z!

akk~z!
1(

r 51

Next

zrk
2n21 a jk~zrk!

akk8 ~zrk!

at j 5M11,M12, . . . ,2M ; k51,2, . . . ,M , ~46!

F jk~n!5
1

2p i Ruzu51
dz zn21

a jk~z!

akk~z!
2(

r 51

Nint

zrk
n21 a jk~zrk!

akk8 ~zrk!

at j 51,2, . . . ,M ; k5M11,M12, . . . ,2M , ~47!

F jk~n![0 otherwise, ~48!

where zrk stands for ther th root of the equationakk(z)
50, akk8 (zrk) refers to the derivative@dakk(z)/dz#z5zrk

, and

Next andNint mark the total number of roots of the equatio
a11(z)50 anda2M2M(z)50, respectively. Here we would
like to stress that although the equalities~46!–~48! have been
found with the understanding of simple rootszrk , the case of
multiple roots can evidently be covered by obtaining limiti
expressions on the final results.

The dependences of the scattering dataa jk(z)/akk(z) as
well asa jk(zrk)/akk8 (zrk) andzrk on time determine the dy
namics of nonlinear intramolecular excitations on a multi
ladder lattice via solutions of the Marchenko equatio
However, in contrast to the one-chain models and multich
models without interchain linear couplings, this dynam
turns out to be more complicated and even in the one-sol
case it reproduces both the traditional translational motion
excitation density along the chains as well as its transve
temporal redistribution between the chains. In terms of
scattering data, the effect of transverse redistribution ar
from linear mixing between the elements of the modifi
scattering matrix caused by the interchain linear coupl
tab (aÞb). In principle, we can always obtain the tim
dependences of the scattering data explicitly, by previou
integrating the evolution equations~38! for the elements of
the modified scattering matrix at any particular choice
coupling parameterstab (a,b51,2, . . . ,M ).

V. SOLITON SOLUTIONS

For practical purposes it is worthwhile to separate
equations forK j (num) with j 51,2, . . . ,M from those for
K j (num) with j 5M11,M12, . . . ,2M and to reshape the
Marchenko equations~45! into the form

K i~num!2(
l 5n

`

(
p5n

`

(
j 51

M

(
k5M11

2M

K j~nu l !F jk~ l 1p!Fki~p1m!

5Jidnm2 (
k5M11

2M

JkFki~n1m!

~m>n; i 51,2, . . . ,M !, ~49!
.
in
s
n
f

se
e
es

g

ly

f

e

K i~num!2(
l 5n

`

(
p5n

`

(
j 5M11

2M

(
k51

M

K j~nu l !F jk~ l 1p!Fki~p1m!

5Jidnm2 (
k51

M

JkFki~n1m!

~m>n; i 5M11,M12, . . . ,2M !. ~50!

To adapt these equations for the needs of multisolitonic
lutions we must equalize the scattering data of the conti
ous spectruma jk(z)/akk(z) to zero, either on and inside
(uzu<1) or on and outside (uzu>1) the unit circle, depend-
ing on what combinations of indices (j 5M11,M
12, . . . ,2M ; k51,2, . . . ,M ) or ( j 51,2, . . . ,M ; k5M
11,M12, . . . ,2M ) are chosen~the so-called unreflectiona
case!. Then, on the one hand, the matrix elemen
F jk( l 1m) of the kernel operator become degenerate@see
Eqs. ~46!–~48!# and, on the other, the form of the diagon
matrix elementsakk(z) can be reconstructed explicitly:

akk~z!5)
s51

N
z22exp~ms1 ips!

z22exp~2ns1 iqs!
, k51,2, . . . ,M ,

~51!

akk~z!5)
s51

N
z222exp~ns2 iqs!

z222exp~2ms2 ips!
,

k5M11,M12, . . . ,2M . ~52!

Here ps and qs are real constants, whereasms and ns are
positive real constants. Except for the restrictions impo
by the assumed simplicity of rootszrk , the constants
ps , qs , ms , ns are supposed to be arbitrary in all oth
respects. Finally,N represents an arbitrary but fixed positiv
integer, being the number of solitons in some particular m
tisoliton solution. EvidentlyNext5Nint52N.

Despite being valid only for the unreflectional case, E
~51! and ~52! are consistent with the analyticity condition
@a11(z) is analytical atuzu.1 anda2M2M(z) is analytical at
uzu,1# and the limiting conditions@ limuzu→`a11(z)51 and
limuzu→0a2M2M(z)51#, as well as with the normalizing con
dition ~23! and the parity conditionsakk(2z)5akk(z).
Though not mentioned earlier, the conditionsakk(2z)
5akk(z) can easily be proved, at least for rapidly decreas
potentialsqa(n) and r a(n) close to those on the compa
support. We observe, by the way, that all other nonzero
ments of the modified transition matrix happen to be o
functions of the spectral parametera jk(2z)52a jk(z)
( j 5M11,M12, . . . ,2M ; k51,2, . . . ,M and j
51,2, . . . ,M ; k5M11,M12, . . . ,2M ).

Manipulating the Marchenko equations~49! and~50! in a
way standard for integral equations with degenerate ker
@43# and using all the parity conditions of the modified tra
sition matrix just mentioned, we find
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K i~num!5 (
s851

N

(
j 5M11

2M

X j
s8q~n!sin2S pm

2 D (
s951

N

(
k51

M

exp~2hs9rm!Cs8qs9r~n!bjk
s8qbki

s9r

1 (
s851

N

(
j 5M11

2M

Y j
s8q~n!cos2S pm

2 D (
s951

N

(
k51

M

exp~2hs9rm!Ss8qs9r~n!bjk
s8qbki

s9r1Jidnm2Fsin2S pn

2 D cos2S pm

2 D
1cos2S pn

2 D sin2S pm

2 D G (
s851

N

exp@2hs8r~n1m!#(
k51

M

Jkbki
s8r ~m>n; i 5M11,M12, . . . ,2M !, ~53!

K i~num!5 (
s851

N

(
j 51

M

X j
s8r~n!sin2S pm

2 D (
s951

N

(
k5M11

2M

exp~2hs9qm!Cs8rs9q~n!bjk
s8rbki

s9q

1 (
s851

N

(
j 51

M

Y j
s8r~n!cos2S pm

2 D (
s951

N

(
k5M11

2M

exp~2hs9qm!Ss8rs9q~n!bjk
s8rbki

s9q1Jidnm2Fsin2S pn

2 D cos2S pm

2 D
1cos2S pn

2 D sin2S pm

2 D G (
s851

N

exp@2hs8q~n1m!# (
k5M11

2M

Jkbki
s8q ~m>n; i 51,2, . . . ,M !, ~54!

where the 2M -component column vectorsX i
sq(n),Y i

sq(n) with i 5M11,M12, . . . ,2M and X i
sr(n),Y i

sr(n) with i
51,2, . . . ,M are determined from the following four sets of linear algebraic equations:

X i
sq~n!2 (

s851

N

(
j 5M11

2M

X j
s8q~n! (

s951

N

(
k51

M

Cs8qs9r~n!Ss9rsq~n!bjk
s8qbki

s9r

5sin2S pn

2 Dexp~2hsqn!Ji2cos2S pn

2 D (
s851

N

exp~2hs8rn!Ss8rsq~n!(
k51

M

Jkbki
s8r

~ i 5M11,M12, . . . ,2M !, ~55!

Y i
sq~n!2 (

s851

N

(
j 5M11

2M

Y j
s8q~n! (

s951

N

(
k51

M

Ss8qs9r~n!Cs9rsq~n!bjk
s8qbki

s9r

5cos2S pn

2 Dexp~2hsqn!Ji2sin2S pn

2 D (
s851

N

exp~2hs8rn!Cs8rsq~n!(
k51

M

Jkbki
s8r

~ i 5M11,M12, . . . ,2M !, ~56!

and

X i
sr~n!2 (

s851

N

(
j 51

M

X j
s8r~n! (

s951

N

(
k5M11

2M

Cs8rs9q~n!Ss9qsr~n!bjk
s8rbki

s9q

5sin2S pn

2 Dexp~2hsrn!Ji2cos2S pn

2 D (
s851

N

exp~2hs8q!Ss8qsr~n! (
k5M11

2M

Jkbki
s8q

~ i 51,2, . . . ,M !, ~57!

Y i
sr~n!2 (

s851

N

(
j 51

M

Y j
s8r~n! (

s951

N

(
k5M11

2M

Ss8rs9q~n!Cs9qsr~n!bjk
s8rbki

s9q

5cos2S pn

2 Dexp~2hsrn!Ji2sin2S pn

2 D (
s851

N

exp~2hs8qn!Cs8qsr~n! (
k5M11

2M

Jkbki
s8q

~ i 51,2, . . . ,M !, ~58!
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respectively. Here we have used the notations

hsq5
1
2 ~ms1 ips!, ~59!

hsr5
1
2 ~ns2 iqs!, ~60!

Cs8qs9r~n![Cs9rs8q~n!52Fexp~hs8q1hs9r !cos2S pn

2 D
1sin2S pn

2 D Gexp@2~hs8q1hs9r !n#

sinh~hs8q1hs9r !
, ~61!

Ss8qs9r~n![Ss9rs8q~n!52Fexp~hs8q1hs9r !sin2S pn

2 D
1cos2S pn

2 D Gexp@2~hs8q1hs9r !n#

sinh~hs8q1hs9r !
, ~62!

bjk
sq52

a jk@exp~hsq!#

akk8 @exp~hsq!#
exp~2hsq!

~ j 5M11,M12, . . . ,2M ; i 51,2, . . . ,M !, ~63!

bjk
sr522

a jk@exp~2hsr!#

akk8 @exp~2hsr!#
exp~hsr!

~ j 51,2, . . . ,M ; k5M11,M12, . . . ,2M !. ~64!

The formulas~53!–~58! supplemented by the relations~29!
and~30! betweenKi j (num) andqa(n),r a(n) are sufficient to
unravel the problem of any multisoliton solution of our no
linear model~12! and~13!. For example, the amplitudes of
one-soliton solution restricted by the physically reasona
conditionstba5tab* and r a(n)5qa* (n) ~the reduced ampli-
tudes! are

qa~n!

5
ba~t!sinhm exp@ ipn12i t coshm cosp#

A(
b51

M

bb~t!bb* ~t!cosh@m~n2x!22t sinhm sinp#

,

~65!

r a~n!5qa* ~n!, a51,2, . . . ,M . ~66!

Here m, p, x, andba(t) are the constant real and time d
pendent complex integration parameters, respectively, de
mined through the scattering data of the auxiliary spec
problem by some one-to-one relations. In particular,
quantitiesba(t) should satisfy the following set of ordinar
differential equations:

ḃa~t!5 i (
b51

M

tabbb~t!, a51,2, . . . ,M . ~67!

Being one-soliton amplitudes, Eqs.~65! and ~66! are appli-
cable to each of the models~12!, ~13! and ~14!, ~15! on an
equal basis.
le

r-
l

e

Let us clarify the meaning of the integration paramete
The coordinatex turns to be the mean longitudinal coord
nate of the soliton distribution taken at the initial mome
t50 due merely to the fact that the identity

(
a51

M

(
n52`

`

nQa~n!Ra~n!

(
a51

M

(
n52`

`

Qa~n!Ra~n!

[x1
2

m
t sinhm sinp ~68!

is fulfilled when calculated on the one-soliton amplitude
Further, the quantity 2(sinhm sinp)/m gives the soliton lon-
gitudinal velocity while the quantity 1/m determines the typi-
cal longitudinal size of the soliton distribution. The left-han
side of identity~68! itself is evidently nothing but the defi
nition of the longitudinal coordinate of the soliton distribu
tion taken at an arbitrary momentt. Finally, the amplitudes
ba(t) (a51,2, . . . ,M ) describe the temporal transverse r
distribution of soliton density. Indeed, the fraction of th
one-soliton density located on theath chain in accordance
with Eqs.~65!,~66! and ~16!,~17! is found to be

Qa~n!Ra~n!

(
b51

M

Qb~n!Rb~n!

5
ba~t!ba* ~t!

(
b51

M

bb~t!bb* ~t!

[
ba~t!ba* ~t!

(
b51

M

bb~0!bb* ~0!

,

~69!

where the last step has been reached with the evolution e
tions ~67! and the Hermiticity of the interchain coupling ma
trix @ tab# combined. We will demonstrate the actual temp
ral interchain redistribution of excitations for particular cas
admitting physical applications.

VI. BEATING AND CIRCULAR TRANSVERSE MODES

Being rather general, the model~12! and ~13! permits a
number of physically interesting ramifications obtainable
merely imposing appropriate restrictions on the coupl
constantstab . Thus, we are able to model the nonlinear e
citations on a multileg ladder lattice unrolled into a tw
dimensional strip or combined into a three-dimensio
bunch of tightly bound chains. Moreover, in the latter ca
we are in a position to apply an external magnetic field p
allel to the ladder legs in a way similar to that described
Feynman, Leighton, and Sands@44#.

We proceed by puttingM52 andtab5(12dab)t with t
a real constant and obtain from Eqs.~12! and~13! a model of
nonlinear intramolecular excitations on a two-leg ladder l
tice closely related to that of the double helix DNA macr
molecule. Then solving Eq.~67! we obtain

ba~t!5 1
2 (

b51

2

@eit t1~21!a2be2 i t t#bb~0!, a51,2,

~70!

and consequently
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ba~t!ba* ~t!

(
b51

2

bb~t!bb* ~t!

5
1

2
2

~21!a

2
@cos 2w cos~2tt!

1sin~d12d2!sin 2w sin~2tt!#,

a51,2, ~71!

where the parametrizationb1(0)5exp(id1)cosw, b2(0)
5exp(id2)sinw has been adopted. From Eq.~71! it is evident
that there is an interchain beating mode redistributing
excitations between the chains. The beating amplitude
equal toAcos2 2w1sin2(d12d2)sin2 2w and it can be regu-
lated from zero to unity by means of the parametersd1 , d2,
and w of the initial transverse distribution. Conversely, t
beating frequencyt/p has a fundamental physical origin an
it is determined exclusively by the interchain linear coupli
constantt, regardless of any particular solution. Moreove
the effect of interchain beating will be observable only
systems with interchain linear coupling and it is impossib
in principle, e.g., in those of Manakov type@8,18,19#. Thus
we can readily reveal a similar effect in the model~12! and
~13! on a three-leg ladder lattice (M53) unrolled into a
two-dimensional strip @ tab5«da2d2b1(12dab2da1d3b
2da3d1b)t#, even despite the nonzero difference« between
the energy of intramolecular excitations of the middle a
side chains.

Now let us consider the case whenM53 and
tab 5 t exp(2if/3)D(a2b11) 1 t exp(if/3)D(a2b21).
HereD(h) is equal to 1 if the numberh is equal to 0,63,
66, . . . andzero otherwise. Thus atf50 the model~12!
and ~13! describes the chargeless nonlinear intramolec
excitations~or charged ones but without external magne
field! on a symmetrically rolled three-leg ladder lattice. Th
model is closely related to the model established for am
excitations ona-helix protein macromolecules@2–4#. When
the quantityf is nonzero it can be identified with the dime
sionless magnetic flux

f5
e

c\
uBuS ~72!

through the triangular cross section of the symmetrica
rolled three-leg ladder lattice, provided the excitations
charged. HereS is the area of a triangular element with ve
tices situated on molecules of the same unit cell. The c
stant magnetic fieldB is supposed to be directed along t
positive direction of the discrete longitudinal coordinaten. It
is worth noticing that the magnetic fieldB changes the
phases of the interchain coupling parameterstab , but fortu-
nately in such a way that the nonlinear model of interest d
not lose its integrability. Then solving the evolution equ
tions ~67! gives rise to

ba~t!5 1
3 exp@2i t t cos~f/3!# (

b51

3

bb~0!

1 1
3 exp@2i t t cos~f/322p/3!#

3 (
b51

3

bb~0!e2p i (a2b)/3
e
is

,

,

d

r

-I

y
e

n-

s
-

1 1
3 exp@2i t t cos~f/312p/3!#

3 (
b51

3

bb~0!e22p i (a2b)/3,

a51,2,3. ~73!

In general, the corresponding expression for the fraction
one-soliton density located on theath chain@Eq. ~69!# looks
rather cumbersome. So we can restrict ourselves to the
when the whole initial soliton density is concentrated on
third chain,ba(0)5da3exp(id3). Then Eq.~69! can be writ-
ten

ba~t!ba* ~t!

(
b51

3

bb~t!bb* ~t!

5 1
3 1 2

9 cos@2A3tt sin~f/3!22pa/3#

1 2
9 cos@2A3tt sin~p/32f/3!22pa/3#

1 2
9 cos@2A3tt sin~p/31f/3!12pa/3#,

a51,2,3. ~74!

According to this formula, the transverse redistribution
soliton density is carried out by three circular travelin
waves with frequencies regulated by the external magn
field. In general, all three modes are different and even
commensurate ones, though at certain particular values o
magnetic field the effects of two-mode degeneracy or tw
mode degeneracy accompanied by vanishing of the t
mode can be observed.

For example, assuming the magnetic flux to bef
563p/263pk (k50,1,2, . . . ) we seethat the last two
terms in Eq.~74! become equal. As a result the fraction
one-soliton density located on theath chain is supported by
two different traveling waves on some constant backgrou

ba~t!ba* ~t!

(
b51

3

bb~t!bb* ~t!

5 1
3 1 2

9 cos@6~21!k2A3tt22pa/3#

1 4
9 cos@6~21!kA3tt12pa/3#,

a51,2,3. ~75!

Here the sign plus (1) or minus (2) is chosen depending
on whether the electric chargee is positive (e51ueu) or
negative (e52ueu).

In another particular case, whenf563pk (k
50,1,2, . . . ) one of thefrequencies is softened to zero
while the other two coincide, giving rise to a standing mod
As a result the expression~74! for the fraction of one-soliton
density is transformed into one standing wave on some c
stant background:
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ba~t!ba* ~t!

(
b51

3

bb~t!bb* ~t!

5 1
3 1 2

9 cos~2pa/3!

1 4
3 cos~2pa/3!cos~3tt!, a51,2,3.

~76!

VII. CONCLUSION

In conclusion, we have developed an exactly integra
nonlinear model on a multileg ladder lattice closely related
a wide range of physically important phenomena from n
linear transport in low-dimensional biological, polymeri
and condensed matter systems to electric pulse propag
in nonlinear transmission lines and light pulse propagation
tunnel- and nonlinearly coupled arrays of optical fibers.
doing this, we have suggested a systematic analytical
proach suitable for the needs of nonlinear physics in m
than one spatial dimension and have studied the structur
the simplest nonlinear excitations on two- and three-leg l
der lattices.

In particular, we have studied the transverse and long
dinal dynamics of nonlinear excitations on a two-leg ladd
lattice and have shown the existence of a transverse be
mode periodically redistributing the soliton density betwe
the chains. Depending on the initial conditions, the relat
amplitude of beating can be varied from zero to unity. On
other hand, the frequency of beating has a fundame
physical origin and it is determined by the value of the
terchain coupling constant.

In the case of charged nonlinear excitations on a bun
like three-leg ladder lattice we have managed to desc
exactly the effect of a constant magnetic field directed alo
the chains. Thus it has been shown that the magnetic
breaks the symmetry of the soliton dynamics with respec
clockwise and counterclockwise propagation across
chains, and gives rise to three different circular travel
z.
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modes redistributing the soliton density in the transverse
rection. Moreover, at some fixed values of the magnetic fi
these modes can be transformed into two circular trave
modes or even into one standing mode.

In this respect we are inclined to treat each fraction
soliton densityQa(n)Ra(n)/(b51

M Qb(n)Rb(n) as possess
ing several breathing transverse modes caused by the i
chain linear coupling, provided the purely mathematical de
nition of breathers@45,46# is applied toQa(n)Ra(n) @or
more generally toQa(n)Rb(m)# instead of toQa(n) or
Ra(n) separately. Indeed, manipulating the ‘‘physica
meaningless’’ quantitiesQa(n) or Ra(n) ~in A. S. Davy-
dov’s terminology! we can wrongly include even purel
translational soliton modes into the breathing ones. The m
direct way to separate spatially constricted translatio
modes from the breathing ones is to trace the dynamic
the total excitation density(a51

M Qa(n)Ra(n) along the
chains, which, for example, in the case of the one-soli
solution ~65! and ~66! related to any multichain integrabl
model of our type~12! and~13! is nothing but the free move
ment of a pulselike traveling wave in the longitudinal dire
tion.

In some problems, and in particular those dealing w
nonlinear optics, the discretization of amplitudesqa(n) and
r a(n) with respect ton becomes unnecessary. Then it
reasonable to replace the discrete nonlinear model~12!,~13!
by its partially continuous equivalent@24#, which also hap-
pens to be integrable. Nevertheless, the general feature
the transverse dynamics of such a partially continuous mo
should coincide with those of the completely discrete o
inasmuch as the terms responsible for the interchain lin
coupling are the same in both models.
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